首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of Asynchronous Earthquake Motion on Complex Bridges. II: Results and Implications on Assessment
Authors:Nicholas J. Burdette  Amr S. Elnashai
Affiliation:1Research Assistant, Mid-America Earthquake (MAE) Center, Dept. of Civil Engineering, Univ. of Illinois at Urbana-Champaign, 205 N. Mathews Ave., Urbana, IL 61801 (corresponding author). E-mail: nick.burdette@arup.com
2Bill and Elaine Hall Endowed Professor, Director, MAE Center, Dept. of Civil Engineering, Univ. of Illinois at Urbana-Champaign, 205 N. Mathews Ave., Urbana, IL 61801. E-mail: aelnash@uiuc.edu
Abstract:Nonuniform seismic excitation has been shown through previous analytical studies to adversely affect the response of long-span bridge structures. To further understand this phenomenon, this study investigates the response of complex straight and curved long-span bridges under the effect of parametrically varying asynchronous motion. The generation process and modeling procedures are presented in a companion paper. A wide-ranging parametric study is performed aimed at isolating the effect of both bridge curvature and the two main sources of asynchronous strong motion: geometric incoherence and the wave-passage effect. Results from this study indicate that response for the 344?m study structure is amplified significantly by nonsynchronous excitation, with displacement amplification factors between 1.6 and 3.4 for all levels of incoherence. This amplification was not constant or easily predicable, demonstrating the importance of inelastic dynamic analysis using asynchronous motion for assessment and design of this class of structure. Additionally, deck stiffness is shown to significantly affect response amplification, through response comparison between the curved and an equivalent straight bridge. Study results are used to suggest an appropriate domain for consideration of asynchronous excitation, as well as an efficient methodology for analysis.
Keywords:Bridges  Seismic analysis  Seismic effects  Earthquakes  Ground motion  Nonlinear analysis  Dynamic analysis  
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号