首页 | 本学科首页   官方微博 | 高级检索  
     

二次蚁群算法在运输调度问题中的应用
引用本文:王俊鸿,修桂华. 二次蚁群算法在运输调度问题中的应用[J]. 计算机应用与软件, 2008, 25(7)
作者姓名:王俊鸿  修桂华
作者单位:1. 沈阳化工学院计算机科学与技术学院,辽宁,沈阳,110142
2. 沈阳化工学院经济管理学院,辽宁,沈阳,110142
摘    要:
蚁群算法在解决车辆路径问题VRP(Vehicle Routing Problem)上表现了很大优势,但也存在全局搜索能力较低、易出现停滞等缺陷.提出的二次蚁群算法是指先用改进的自适应蚁群算法对VRP求得一个可行解,再用求解旅行商问题TSP(Traveling Salesman Problem)的蚁群算法对所得到的解进一步优化,从而得到最优解.从两个实验仿真结果的数据上看,该算法具有很强的搜索能力,克服了基本蚁群算法的某些弊端,能够有效地求解车辆路径问题.

关 键 词:车辆路径问题  旅行商问题  二次蚁群算法  自适应蚁群算法

APPLYING ANT COLONY OPTIMIZATION ALGORITHM TWICE IN TRANSPORTATION SCHEDULING PROBLEM
Wang Junhong,Xiu Guihua. APPLYING ANT COLONY OPTIMIZATION ALGORITHM TWICE IN TRANSPORTATION SCHEDULING PROBLEM[J]. Computer Applications and Software, 2008, 25(7)
Authors:Wang Junhong  Xiu Guihua
Affiliation:Wang Junhong1 Xiu Guihua21(School of Computer Science , Technology,Shenyang Institute of Chemical Technology,Shenyang 110142,Liaoning,China)2(School of Economics , Management,China)
Abstract:
Ant Colony Optimization(ACO) algorithm shows big advantage in solving the Vehicle Routing Problem(VRP).However,it has some typical shortages too,such as low ability in global search and easy to happen stagnation behavior.Applying ACO algorithm twice is proposed in this paper to obtain optimal solution for VRP.It is divided into two steps:the first step is to apply the improved adaptive ACO algorithm to VRP for seeking a feasible solution;the second step is to use the ACO algorithm of solving Traveling Sales...
Keywords:Vehicle routing problem Traveling salesman problem Doubly applied ACO algorithm Adaptive ACO algorithm  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号