首页 | 本学科首页   官方微博 | 高级检索  
     


Dual‐Salt Mg‐Based Batteries with Conversion Cathodes
Authors:Ye Zhang  Junjie Xie  Yanlin Han  Chilin Li
Affiliation:1. State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, P. R. China;2. University of Chinese Academy of Sciences, Beijing, P. R. China;3. College of Environmental and Chemical Engineering, Shanghai University, Shanghai, P. R. China
Abstract:Mg batteries as the most typical multivalent batteries are attracting increasing attention because of resource abundance, high volumetric energy density, and smooth plating/stripping of Mg anodes. However, current limitations for the progress of Mg batteries come from the lack of high voltage electrolytes and fast Mg‐insertable structure prototypes. In order to improve their energy or power density, hybrid systems combining Li‐driven cathode reaction with Mg anode process appear to be a potential solution by bypassing the aforementioned limitations. Here, FeS x (x = 1 or 2) is employed as conversion cathode with 2–4 electron transfers to achieve a maximum energy density close to 400 Wh kg?1, which is comparable with that of Li‐ion batteries but without serious dendrite growth and polysulphide dissolution. In situ formation of solid electrolyte interfaces on both sulfide and Mg electrodes is likely responsible for long‐life cycling and suppression of S‐species passivation at Mg anodes. Without any decoration on the cathode, electrolyte additive, or anode protection, a reversible capacity of more than 200 mAh g?1 is still preserved for Mg/FeS2 after 200 cycles.
Keywords:conversion reactions  dual‐salt electrolytes  iron sulfides  Li‐driven cathodes  Mg‐based batteries
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号