首页 | 本学科首页   官方微博 | 高级检索  
     

基于随机森林的变压器油中溶解气体浓度预测
引用本文:徐肖伟,李鹤健,于虹,刘可真,赵勇军,盛戈皞. 基于随机森林的变压器油中溶解气体浓度预测[J]. 电子测量技术, 2020, 0(3): 66-70
作者姓名:徐肖伟  李鹤健  于虹  刘可真  赵勇军  盛戈皞
作者单位:云南电网有限责任公司电力科学研究院;昆明理工大学电力工程学院;云南电力技术有限责任公司;上海交通大学电气工程系
基金项目:国家自然科学基金资助项目(51477100);云南电网有限责任公司科技项目(YNKJXM20180736)资助。
摘    要:对油中溶解气体浓度进行分析及发展趋势预测,可以为变压器的状态评估提供重要的依据。传统的离线DGA方法因易导致延迟判断变压器的运行状态,造成一定的经济损失,现已不适用于油中溶解气体浓度分析及预测。因此,提出一种基于随机森林的变压器油中溶解气体浓度预测模型,以更准确地分析与预测油中溶解气体浓度。该模型以7种气体浓度构成特征向量空间,作为可视输入,并以目标气体浓度作为输出。试验结果表明,相较于传统的机器学习方法(BPNN、RBF和SVM),随机森林模型能更准确地预测油中溶解气体浓度,且需要调整参数少、训练效率高。通过算例分析,验证了该方法的有效性。

关 键 词:变压器  油中溶解气体  随机森林  预测

Concentration prediction of dissolved gases in transformer oil based on random forest
Xu Xiaowei,Li Hejian,Yu Hong,Liu Kezhen,Zhao Yongjun,Sheng Ge. Concentration prediction of dissolved gases in transformer oil based on random forest[J]. Electronic Measurement Technology, 2020, 0(3): 66-70
Authors:Xu Xiaowei  Li Hejian  Yu Hong  Liu Kezhen  Zhao Yongjun  Sheng Ge
Affiliation:(Electric Power Research Institute,Yunnan Power Grid Co.,Ltd.,Kunming 650217,China;Faculty of Electric Power Engineering,Kunming University of Science and Technology,Kunming 650504,China;Yunnan Electric Power Technology Co.,Ltd.,Kunming 650000,China;Department of Electrical Engineering,Shanghai Jiaotong University,Shanghai 200240,China)
Abstract:The analysis and prediction of the trend the dissolved gas will have in oil can provide crucial basis for estimating the running status of the transformer.The traditional off-line DGA excruciatingly leads to deferred estimation of the running status of the transformer and hence the financial loss will not be prevented.At present,the traditional off-line DGA does not apply in the interest.Therefore,a random forest(RF)model is first suggested for more accurately analyzing and predicting the trend of the dissolved gas in oil.Seven types of gas build the feature vector space as the input of the model,and hence the output is the objective dissolved gas in oil.Experiments show that the RF model is a more accurate approach to predict the dissolved gas by comparison with the traditional machine learning methods(BPNN,RBF and SVM),the RF model is highly efficient in training and need to adjust less parameters.As a result,case analysis verifies effectiveness of the proposed model.
Keywords:transformer  dissolved gas in oil  random forest  prediction
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号