首页 | 本学科首页   官方微博 | 高级检索  
     


Aberration compensation of holographic particle images using digital holographic microscopy
Authors:KF Tamrin  B Rahmatullah  SM Samuri
Affiliation:1. Faculty of Arts, Computing and Creative Industry, Computing Department, Sultan Idris Education University, Tanjung Malim, Malaysia;2. Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, UKk.f.tamrin@outlook.com
Abstract:Characterisation of small and large-scale vortices in turbulent flows demands a system with high spatial resolution. The measurement of high spatial resolution, three-dimensional vector displacements in fluid mechanics using holography, is usually hampered by aberration. Aberration poses some problems in particle image identification due to low fidelity of real image reconstruction. Phase mismatch between the recording and the reconstruction waves was identified as the main source of aberration in this study. This paper demonstrates how aberration compensation can be achieved by cross-correlating the complex amplitude of an aberrated reconstructed object with the phase conjugate of a known reference object in the plane of the hologram (frequency space). Results favourably show significant increase in Strehl ratio and suppression of background noise that are more pronounced for particle images of 10 and 5 microns. It is clear from the work conducted that wavefront aberration measurement and compensation of holographic microscopic objects are now possible with the use of a variant digital holographic microscope.
Keywords:aberration  digital holography  digital holographic microscopy  holographic microscope  compensation  holographic particle image velocimetry
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号