Affiliation: | aUniversal Technology Corporation, 1270 North Fairfield Road, Dayton, OH 45432-2600, United States b2941 Hobson Way AFRL/MLBT, Wright Patterson Air Force Base, OH 45433-7750, United States |
Abstract: | Plasma-sprayed Al–bronze or CuNiIn coatings are often applied to protect against fretting wear and extend the operational life of Ti-alloy compressor blades in turbine engines. In order to develop a fundamental understanding of how these coating systems perform under gross slip fretting conditions, bench level fretting wear tests were conducted at room temperature to simulate cold engine startup. Alternative coatings such as plasma-sprayed molybdenum and nickel were also evaluated because of their potential for reducing fretting wear under certain simulated engine conditions. The combination of scanning electron microscopy (SEM), surface profilometry, surface chemistry (EDS), and friction analysis were used to study coating performance and evaluate the interfacial wear mechanisms. In this study, it was determined that all coatings caused significant damage to the mating Ti6Al4V surfaces and that the wear mechanisms were all similar to those of the uncoated baseline case. |