首页 | 本学科首页   官方微博 | 高级检索  
     


A Self-Powered,Rechargeable, and Wearable Hydrogel Patch for Wireless Gas Detection with Extraordinary Performance
Authors:Zixuan Wu  Hao Wang  Qiongling Ding  Kai Tao  Wenxiong Shi  Chuan Liu  Jun Chen  Jin Wu
Affiliation:1. State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275 P. R. China;2. The Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an, 710072 P. R. China;3. Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384 P. R. China
Abstract:Flexible gas sensors play an indispensable role in diverse applications spanning from environmental monitoring to portable medical electronics. Full wearable gas monitoring system requires the collaborative support of high-performance sensors and miniaturized circuit module, whereas the realization of low power consumption and sustainable measurement is challenging. Here, a self-powered and reusable all-in-one NO2 sensor is proposed by structurally and functionally coupling the sensor to the battery, with ultrahigh sensitivity (1.92%/ppb), linearity (R2 = 0.999), ultralow theoretical detection limit (0.1 ppb), and humidity immunity. This can be attributed to the regulation of the gas reaction route at the molecular level. The addition of amphiphilic zinc trifluoromethanesulfonate (Zn(OTf)2) enables the H2O-poor inner Helmholtz layer to be constructed at the electrode–gel interface, thereby facilitating the direct charge transfer process of NO2 here. The device is then combined with a well-designed miniaturized low-power circuit module with signal conditioning, processing and wireless transmission functions, which can be used as wearable electronics to realize early and remote warning of gas leakage. This study demonstrates a promising way to design a self-powered, sustainable, and flexible gas sensor with high performance and its corresponding wireless sensing system, providing new insight into the all-in-one system of gas detection.
Keywords:flexible hydrogel sensors  room-temperature NO 2 sensors  self-powered gas sensors  ultrasensitive  wireless and wearable
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号