首页 | 本学科首页   官方微博 | 高级检索  
     

基于小波模极大值和SVM的智能车辆障碍物检测
引用本文:沈志熙,黄席樾,权循宝,李晓伟. 基于小波模极大值和SVM的智能车辆障碍物检测[J]. 四川大学学报(工程科学版), 2008, 40(6): 144-149
作者姓名:沈志熙  黄席樾  权循宝  李晓伟
作者单位:重庆大学,自动化学院,重庆,400030
基金项目:国家自然科学基金资助项目,重庆市自然科学基金资助项目
摘    要:
针对复杂交通场景中智能车辆前向障碍物检测问题,根据障碍物的后视视觉特征,提出了一种基于小波模极大值和支持向量机的障碍物检测方法.利用小波变换对奇异信号的多尺度分析,并结合障碍物先验知识的多特征组合,对候选障碍物区域进行检测;构建了一种适合于交通场景中障碍物分类的二叉树支持向量机(BT-SVM)多类分类器,对候选障碍物区域进行确认识别.将该方法应用于高速公路、城区道路等多种交通场景中,实车实验结果表明了本方法的有效性、实时性和通用性.

关 键 词:智能车辆  障碍物检测  小波模极大值  支持向量机  复杂交通场景
收稿时间:2008-05-19
修稿时间:2008-06-28

Obstacles Detection for Intelligent Vehicle based on WTMM and SVM Classifier
Shen Zhi-Xi,Huang Xi-Yue,Quan Xun-Bao and Li Xiao-Wei. Obstacles Detection for Intelligent Vehicle based on WTMM and SVM Classifier[J]. Journal of Sichuan University (Engineering Science Edition), 2008, 40(6): 144-149
Authors:Shen Zhi-Xi  Huang Xi-Yue  Quan Xun-Bao  Li Xiao-Wei
Affiliation:College of Automation, Chonqing University,College of Automation, Chonqing University,College of Automation, Chonqing University,College of Automation, Chonqing University
Abstract:
To detect forward obstacles for intelligent vehicle in complex traffic scenes,a novel obstacle detection method based on wavelet transform module maximum(WTMM) and support vector machine(SVM) was presented,considering obvious rear visual features of forward obstacles.Firstly,the candidate regions of obstacle(ROIs) were detected based on multi-scale singularity analysis with WTMM and multi-features combination of obstacle knowledge.Then,these ROIs were recognised based on a compatible binary tree support vector machine(BT-SVM) classifier for obstacle pattern of traffic scenes.The application of the proposed method to different traffic scenes(e.g.,simply structured highway,complex urban street) showed that it has the efficient,real-time and universale ability.
Keywords:intelligent vehicle  obstacle detection  wavelet transform module maximum  SVM  complex traffic scenes
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《四川大学学报(工程科学版)》浏览原始摘要信息
点击此处可从《四川大学学报(工程科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号