首页 | 本学科首页   官方微博 | 高级检索  
     

基于PSO改进决策树算法的研究
引用本文:丁华,王秀坤,孙焘. 基于PSO改进决策树算法的研究[J]. 小型微型计算机系统, 2005, 26(7): 1206-1210
作者姓名:丁华  王秀坤  孙焘
作者单位:大连理工大学,计算机系,辽宁,大连,116023
摘    要:决策树方法是发现概念描述空间的一种特别有效的方法,是实例学习中具有代表性的学习方法,专门用于处理大量对象.如何快速建立简单可靠的决策树是一个重要的问题.文章引入PSO算法,并针对标准PSO算法易限于局部极小点的局限性,在保持了PSO算法结构简单可行特点的同时,利用惩罚函数方法,引入叉乘控制项,帮助算法摆脱局部极小点的束缚,提高了优化速度.将改进的PSO引入到决策树建树方法中,并与传统的决策树方法及使用遗传算法改进后的树进行比较,验证了其优越性.

关 键 词:决策树 粒子群 优化
文章编号:1000-1220(2005)07-1206-05

Research on Decision Tree Method Based on Improved PSO
DING Hua,WANG Xiu-kun,SUN Tao. Research on Decision Tree Method Based on Improved PSO[J]. Mini-micro Systems, 2005, 26(7): 1206-1210
Authors:DING Hua  WANG Xiu-kun  SUN Tao
Abstract:The decision tree method is the effective method of detecting for concept describing space and the representative learning way in exampling learning of which specially dispose mass object. Then how to establish the decision tree of simple and credible becomes the important problem. The paper introduces the Particle Swarm Optimize Algorithms, by adopting the method of punish function and the forking product controlling item, to conquer the shortcoming of the algorithm for getting into the scope around of local particle point. Building up decision tree by improved PSO, the paper gives the example to validate that the improved algorithm is better than the original decision tree method and by improved by GA.
Keywords:decision tree  particle swarm  optimization  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号