首页 | 本学科首页   官方微博 | 高级检索  
     


Cylindrical hybrid plasmonic waveguide for subwavelength confinement of light
Authors:Chen Daru
Affiliation:Institute of Information Optics, Zhejiang Normal University, Jinhua 321004, China. daru@zjnu.cn
Abstract:
A novel cylindrical hybrid plasmonic waveguide is proposed to achieve subwavelength confinement of light. With a metal core surrounded by a silica layer and a silicon layer, the proposed cylindrical hybrid plasmonic waveguide can achieve a ring-structure mode profile at the operating wavelength (1550 nm). Most mode power locates in the silica layer with a nanoscale thickness (e.g., 50, 20, or even 5 nm), which is due to the effects of both a strong discontinuity of the normal component of the electric field at the silicon-silica interface and the exited surface plasmon wave at the silica-metal interface. Cylindrical hybrid plasmonic waveguides with different structure parameters are investigated and a relatively long propagation distance of tens of micrometers (or even hundreds of micrometers) is observed.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号