首页 | 本学科首页   官方微博 | 高级检索  
     

基于融合显著图和高效子窗口搜索的红外目标分割
引用本文:刘松涛, 刘振兴, 姜宁. 基于融合显著图和高效子窗口搜索的红外目标分割. 自动化学报, 2018, 44(12): 2210-2221. doi: 10.16383/j.aas.2018.c170142
作者姓名:刘松涛  刘振兴  姜宁
作者单位:1.海军大连舰艇学院信息系统系 大连 116018
基金项目:中国博士后科学基金2016T90979中国博士后科学基金2015M572694国家自然科学基金61303192
摘    要:
为了快速精确地分割红外图像目标,提出一种基于融合显著图和高效子窗口搜索的红外目标分割方法.在获取图像超像素的基础上,提取每个区域增强的Sigma特征,并考虑邻域对比度、背景对比度、空间距离和区域大小的影响,构建局部显著图,接着利用全局核密度估计构建全局显著图,然后融合局部和全局显著图实现图像显著性检测,最后应用高效子窗口搜索方法检测和筛选目标,实现红外目标分割.实验结果表明,新方法的显著图结果目标区域一致高亮且边缘清晰,背景杂波抑制效果好,可实现快速精确的目标分割.

关 键 词:红外图像   局部显著图   全局显著图   高效子窗口搜索   区域协方差
收稿时间:2017-03-17

Target Segmentation of Infrared Image Using Fused Saliency Map and Efficient Subwindow Search
LIU Song-Tao, LIU Zhen-Xing, JIANG Ning. Target Segmentation of Infrared Image Using Fused Saliency Map and Efficient Subwindow Search. ACTA AUTOMATICA SINICA, 2018, 44(12): 2210-2221. doi: 10.16383/j.aas.2018.c170142
Authors:LIU Song-Tao  LIU Zhen-Xing  JIANG Ning
Affiliation:1. Department of Information System, Dalian Naval Academy, Dalian 116018
Abstract:
In order to segment infrared target fast and precisely, a segmentation method using fused saliency map and efficient subwindow search is proposed. Firstly, based on image superpixels, the enhanced sigma feature of every region is extracted, and at the same time considering the influence of neighbor contrast, background contrast, spatial distance and region's size, the local saliency map is constructed. Next, the global saliency map is obtained by global kernel density estimation. Then, the saliency detection result of infrared image is obtained by fusing the local and global saliency maps. Finally, the efficient subwindow search method is used to detect and segment the target. Experimental results show that the saliency map of the proposed method has complete target feature, obvious edges and good background suppression, and that the algorithm can segment the infrared target fast and precisely.
Keywords:Infrared image  local saliency map  global saliency map  efficient subwindow search  region covariance
点击此处可从《自动化学报》浏览原始摘要信息
点击此处可从《自动化学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号