首页 | 本学科首页   官方微博 | 高级检索  
     

通过类搜索算法实现组合测试数据集的全局优化
作者姓名:Chen Hao  Pan Xiaoying  Sun Jiaze
作者单位:西安邮电大学计算机学院 西安 710121
基金项目:the National Natural Science Foundation of China61203311the Scientific Research Program of Shaanxi Provincial Education Department of China2015JK 1672the National Natural Science Foundation of China61105064
摘    要:测试数据集的生成是软件组合测试的一个关键问题.为了提高测试数据的生成质量,提出了一种通过类搜索过程驱动的全局优化机制.在这个方法中,一个二进制编码机制被用于将组合测试数据生成问题转换为一个二进制基因序列的优化问题.同时,为了有效求解此问题,设计了一种新颖的全局优化算法—类搜索算法.此文主要论述了优化问题转换机制的可行性和有效性,并介绍了类搜索算法的计算机制.通过大量的仿真实验显示所提出的方法是可行的,且针对小规模组合测试问题,它是一种更为高效的组合测试数据集生成方法.

关 键 词:类搜索算法(CSA)   组合测试   全局优化   测试数据集优化
收稿时间:2017-01-05
点击此处可从《自动化学报》浏览原始摘要信息
点击此处可从《自动化学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号