首页 | 本学科首页   官方微博 | 高级检索  
     

高渗透光伏接入下基于近似值函数的主动配电网鲁棒优化
引用本文:孙兴鲁,董萍,王雅平,林赟. 高渗透光伏接入下基于近似值函数的主动配电网鲁棒优化[J]. 电力系统自动化, 2018, 42(15): 62-69
作者姓名:孙兴鲁  董萍  王雅平  林赟
作者单位:华南理工大学电力学院
基金项目:国家重点基础研究发展计划(973计划)资助项目(2013CB228205);国家自然科学基金资助项目(51107042)
摘    要:
针对高渗透率光伏接入下主动配电网(ADN)运行优化的不确定性问题,提出了一种基于近似值函数的自适应鲁棒优化方法。该方法考虑光伏出力的随机特性和系统运行的鲁棒性,通过自适应鲁棒优化保证系统安全运行,同时最小化运行成本。首先,建立考虑多种可调装置的ADN运行优化模型,并通过凸优化技术将该模型转化为混合整数二阶锥优化模型。然后,利用近似动态规划的值函数思想构造ADN时段解耦的自适应鲁棒优化模型,通过逐次投影近似算法进行近似值函数参数训练。最后,采用列与限制生成算法实现模型的鲁棒逐时段递推求解。对IEEE 33节点和PGE69节点系统进行算例分析,并与确定性优化、近似动态规划和两阶段鲁棒优化方法进行对比,验证了所提方法的可行性和有效性。

关 键 词:主动配电网;高渗透率光伏;近似值函数;自适应鲁棒优化;列与限制生成算法
收稿时间:2017-09-08
修稿时间:2018-07-05

Robust Optimization of Active Distribution Network with High-penetration Photovoltaic Access Based on Approximated Value Function
SUN Xinglu,DONG Ping,WANG Yaping and LIN Yun. Robust Optimization of Active Distribution Network with High-penetration Photovoltaic Access Based on Approximated Value Function[J]. Automation of Electric Power Systems, 2018, 42(15): 62-69
Authors:SUN Xinglu  DONG Ping  WANG Yaping  LIN Yun
Affiliation:School of Electric Power, South China University of Technology, Guangzhou 510641, China,School of Electric Power, South China University of Technology, Guangzhou 510641, China,School of Electric Power, South China University of Technology, Guangzhou 510641, China and School of Electric Power, South China University of Technology, Guangzhou 510641, China
Abstract:
In view of the uncertainty in the optimization of active distribution network(ADN)operation under high-penetration photovoltaic(PV)access, an adaptive robust optimization method based on approximate value function is proposed. The method considers the stochastic characteristics of PV output and the robustness of the system operation, ensuring the safe operation of the system through adaptive robust optimization and minimizing the operation cost at the same time. First of all, the optimal operation model is established considering various ADN adjustable devices, and the convex optimization technique is used to transform the original problem into a mixed integer second order cone optimization model. Then, the time decoupling adaptive robust optimization model is constructed by using the approximated value function of approximate dynamic programming(ADP), and the successive projection approximation routine algorithm is used to train the value function parameters being used in the robust model. Finally, column and constraint generation algorithm is adopted to solve adaptive robust model for each period successively by means of approximated value function. Case study on modified IEEE 33-bus and PG&E69-bus distribution system is analyzed and compared with deterministic optimization, ADP and two-stage robust optimization method to verify the feasibility and effectiveness of the proposed method.
Keywords:active distribution network   high-penetration photovoltaic   approximated value function   adaptive robust optimization   column and constraint generation algorithm
本文献已被 CNKI 等数据库收录!
点击此处可从《电力系统自动化》浏览原始摘要信息
点击此处可从《电力系统自动化》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号