首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进深度受限玻尔兹曼机算法的光伏发电短期功率概率预测
引用本文:王继东,冉冉,宋智林. 基于改进深度受限玻尔兹曼机算法的光伏发电短期功率概率预测[J]. 电力自动化设备, 2018, 38(5)
作者姓名:王继东  冉冉  宋智林
作者单位:天津大学智能电网教育部重点实验室
基金项目:国家自然科学基金资助项目(51477111);国家重点研发计划项目(2016YFB0901104)
摘    要:
光伏发电功率受自然环境影响具有明显的波动性、间歇性与随机性,对光伏发电进行短期功率的概率预测可以有效缓解给电网调度、能量管理等方面带来的诸多不利影响。提出一种基于改进深度受限玻尔兹曼机(RBM)算法的光伏发电短期功率概率预测模型,通过灰色关联系数法寻找待预测日的相似日,并利用遗传算法对RBM算法进行参数优化,避免模型参数寻优陷入局部最优,以提高预测模型的预测精度。仿真算例表明,所提模型可以更好地反映光伏发电功率的概率分布。

关 键 词:光伏发电;概率预测;受限玻尔兹曼机;灰色关联系数法;遗传算法

Probability forecast of short-term photovoltaic power generation based on improved depth restricted Boltzmann machine algorithm
WANG Jidong,RAN Ran and SONG Zhilin. Probability forecast of short-term photovoltaic power generation based on improved depth restricted Boltzmann machine algorithm[J]. Electric Power Automation Equipment, 2018, 38(5)
Authors:WANG Jidong  RAN Ran  SONG Zhilin
Affiliation:Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Tianjin 300072, China,Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Tianjin 300072, China and Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Tianjin 300072, China
Abstract:
Since the photovoltaic power is of obvious fluctuation, intermittence and random caused by the natural environment, the probability forecast of short-term photovoltaic power generation can effectively reduce the adverse effects on the aspects of power grid dispatching, energy management, etc. A probability forecast model based on the improved depth RBM(Restricted Boltzmann Machine) algorithm is proposed, which adopts the grey correlation method to find the day similar to the forecasted day, and uses the genetic algorithm to optimize the parameters of RBM algorithm, avoiding falling into local optimum and improving the forecast accuracy. A simulation example shows that the proposed model can better reflect the probability distribution of photovoltaic power generation.
Keywords:photovoltaic power generation   probability forecast   RBM   grey correlation coefficient method   genetic algorithm
本文献已被 CNKI 等数据库收录!
点击此处可从《电力自动化设备》浏览原始摘要信息
点击此处可从《电力自动化设备》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号