首页 | 本学科首页   官方微博 | 高级检索  
     

用于电力系统动态状态估计的改进鲁棒无迹卡尔曼滤波算法
引用本文:曲正伟,董一兵,王云静,陈亮. 用于电力系统动态状态估计的改进鲁棒无迹卡尔曼滤波算法[J]. 电力系统自动化, 2018, 42(10): 87-92
作者姓名:曲正伟  董一兵  王云静  陈亮
作者单位:电力电子节能与传动控制河北省重点实验室(燕山大学);国网河北省电力有限公司经济技术研究院
摘    要:
针对动态状态估计中传统无迹卡尔曼滤波(UKF)采样方法的不足,对UKF算法进行改进,每次估计实时调节比例修正因子,提高滤波性能。动态状态估计结果精度受量测粗差影响较大,为此提出一种鲁棒无迹卡尔曼滤波(RUKF)算法,引入粗差判据检测粗差,通过增强因子来降低粗差对系统状态估计结果的影响。将RUKF算法运用于电力系统动态状态估计,仿真结果表明,该算法具有良好的估计性能及较强的鲁棒性。

关 键 词:无迹卡尔曼滤波  比例修正因子  粗差  鲁棒性  状态估计
收稿时间:2017-08-26
修稿时间:2018-04-11

Improved Robust Unscented Kalman Filtering Algorithm for Dynamic State Estimation of Power Systems
QU Zhengwei,DONG Yibing,WANG Yunjing and CHEN Liang. Improved Robust Unscented Kalman Filtering Algorithm for Dynamic State Estimation of Power Systems[J]. Automation of Electric Power Systems, 2018, 42(10): 87-92
Authors:QU Zhengwei  DONG Yibing  WANG Yunjing  CHEN Liang
Affiliation:Key Lab of Power Electronics for Energy Conservation and Motor Drive of Hebei Province(Yanshan University), Qinhuangdao 066004, China,Key Lab of Power Electronics for Energy Conservation and Motor Drive of Hebei Province(Yanshan University), Qinhuangdao 066004, China,Key Lab of Power Electronics for Energy Conservation and Motor Drive of Hebei Province(Yanshan University), Qinhuangdao 066004, China and Economic Research Institute of State Grid Hebei Electric Power Co. Ltd., Shijiazhuang 050024, China
Abstract:
Aiming at the shortcomings of traditional unscented Kalman filter(UKF)sampling method in the dynamic state estimation, the UKF algorithm is improved by adjusting the ratio correction factor in real time to improve the filtering performance. The accuracy of dynamic state estimation is greatly influenced by the gross error. Therefore, a robust unscented Kalman filter(RUKF)algorithm is proposed. The gross error criterion is introduced to detect the gross errors, and the enhancement factor is applied to reduce the influence of gross errors on system state estimation results. RUKF algorithm has been applied to the dynamic state estimation of the power system and the simulation results show that RUKF algorithm has good estimation performance and strong robustness.
Keywords:unscented Kalman filter(UKF)   ratio correction factor   gross error   robustness   state estimation
本文献已被 CNKI 等数据库收录!
点击此处可从《电力系统自动化》浏览原始摘要信息
点击此处可从《电力系统自动化》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号