首页 | 本学科首页   官方微博 | 高级检索  
     


Fluid-to-fluid modeling of critical heat flux in 4 × 4 rod bundles
Authors:Jun Chen  Jianru Liao  Bo Kuang  Hua Zhao  Yanhua Yang
Affiliation:aNSSE Department, Shanghai Jiao Tong University, Shanghai, China;bBPNC Lab, Nuclear Power Institute of China, Chengdu, China
Abstract:Fluid-to-fluid modeling of critical heat flux (CHF) is to simulate the CHF behaviors for water by employing low cost modeling fluid, and the flow scaling factor is the key to apply the technique to fuel bundles. The CHF experiments in 4×4 rod bundles have been carried out in Freon-12 loop in equivalent nuclear reactor water conditions (P=10.0–16.0 MPa, G=488.0–2100.0 kg/m2 s, Xcr=−0.20–0.30). The models in fluid-to-fluid modeling of CHF is verified by the CHF data for Freon-12 obtained in the experiment and the CHF correlation for water obtained by Nuclear Power Institute of China (NPIC) in the same 4×4 rod bundles. It has been found that the S.Y. Ahmad Compensation Distortion model, the Lu Zhongqi model, the Groeneveld model and Stevens–Kirby model overpredict the bundles CHF values for water. Then an empirical correlation of flow scaling factor is proposed. Comparison of the CHF data in two kinds of test sections for Freon-12, in which the distance of the last grid away the end of heated length is different, shows that the spacer grid, which is located at 20 mm away from the end of the heated length, has evidently influenced on the CHF value in the 4×4 rod bundles for Freon-12. This is different from that for water, and the need for further work is required.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号