首页 | 本学科首页   官方微博 | 高级检索  
     


Seismic performance of steel MRF building with nonlinear viscous dampers
Authors:Baiping Dong  James M Ricles  Richard Sause
Affiliation:ATLSS Engineering Research Center, Department of Civil and Environmental Engineering, Lehigh University, Bethlehem, PA 18015, USA
Abstract:This paper presents an experimental study of the seismic response of a 0.6-scale three-story seismicresistant building structure consisting of a moment resisting frame (MRF) with reduced beam sections (RBS), and a frame with nonlinear viscous dampers and associated bracing (called the DBF). The emphasis is on assessing the seismic performance for the design basis earthquake (DBE) and maximum considered earthquake (MCE). Three MRF designs were studied, with the MRF designed for 100%, 75%, and 60%, respectively, of the required base shear design strength determined according to ASCE 7-10. The DBF with nonlinear viscous dampers was designed to control the lateral drift demands. Earthquake simulations using ensembles of DBE and MCE ground motions were conducted using the real-time hybrid simulation method. The results show the drift demand and damage that occurs in the MRF under seismic loading. Overall, the results show that a high level of seismic performance can be achieved under DBE and MCE ground motions, even for a building structure designed for as little as 60% of the base shear design strength required by ASCE 7-10 for a structure without dampers.
Keywords:seismic response  steel MRF  nonlinear viscous damper  design basis earthquake  real-time hybrid simulation  
本文献已被 SpringerLink 等数据库收录!
点击此处可从《》浏览原始摘要信息
点击此处可从《》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号