首页 | 本学科首页   官方微博 | 高级检索  
     


Wavelet Distance Measure for Person Identification Using Electrocardiograms
Abstract:In this paper, the authors present an evaluation of a new biometric based on electrocardiogram (ECG) waveforms. ECG data were collected from 50 subjects during three data-recording sessions on different days using a simple user interface, where subjects held two electrodes on the pads of their thumbs using their thumb and index fingers. Data from session 1 were used to establish an enrolled database, and data from the remaining two sessions were used as test cases. Classification was performed using three different quantitative measures: percent residual difference, correlation coefficient, and a novel distance measure based on wavelet transform. The wavelet distance measure has a classification accuracy of 89%, outperforming the other methods by nearly 10%. This ECG person-identification modality would be a useful supplement for conventional biometrics, such as fingerprint and palm recognition systems.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号