首页 | 本学科首页   官方微博 | 高级检索  
     

基于强化学习的多任务联盟并行形成策略
引用本文:蒋建国, 苏兆品, 齐美彬, 张国富. 基于强化学习的多任务联盟并行形成策略. 自动化学报, 2008, 34(3): 349-352. doi: 10.3724/SP.J.1004.2008.00349
作者姓名:蒋建国  苏兆品  齐美彬  张国富
作者单位:1.Department of Computer and Information Science, Hefei University of Technology, Hefei 230009, P.R. China
基金项目:Supported by National Natural Science Foundation of China(60474035),National Research Foundation for the Doctoral Program of Higher Education of China(20050359004),Natural Science Foundation of Anhui Province(070412035)
摘    要:Agent coalition is an important manner of agents' coordination and cooperation. Forming a coalition, agents can enhance their ability to solve problems and obtain more utilities. In this paper, a novel multi-task coalition parallel formation strategy is presented, and the conclusion that the process of multi-task coalition formation is a Markov decision process is testified theoretically. Moreover, reinforcement learning is used to solve agents' behavior strategy, and the process of multi-task coalition parallel formation is described. In multi-task oriented domains, the strategy can effectively and parallel form multi-task coalitions.

关 键 词:Multi-task coalition   parallel formation   Markov decision process   reinforcement learning
收稿时间:2007-05-30
修稿时间:2007-05-30
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《自动化学报》浏览原始摘要信息
点击此处可从《自动化学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号