首页 | 本学科首页   官方微博 | 高级检索  
     


Activity recognition and intensity estimation in youth from accelerometer data aided by machine learning
Authors:Xiang Ren  Wei Ding  Scott E. Crouter  Yang Mu  Rong Xie
Abstract:Physical activity monitoring for youth is an area of increasing scientific and public health interest due to the high prevalence of obesity and downward trend in physical activity. However, accurate assessment of such activity remains a challenging problem because of the complex nature in which certain activities are performed. In this study, we formulated the issue as a machine learning problem—using a diverse set of 19 physical activities commonly performed by youth—via two approaches: activity recognition and intensity estimation. With the aid of training data, we implemented a distance metric learning method called DML-KNN that utilizes time-frequency features and is capable of effectively classifying both continuous and intermittent movement in youth subjects. Four different time-frequency feature extraction methods were then systematically evaluated. Our results show that the DML-KNN method performed competitively, especially when using features extracted by the Tamura method for intensity estimation, and by the Square Coefficient method for activity recognition.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号