首页 | 本学科首页   官方微博 | 高级检索  
     


High-cycle fatigue of hybrid carbon nanotube/glass fiber/polymer composites
Authors:Christopher S. Grimmer  C. K. H. Dharan
Affiliation:(1) Department of Mechanical Engineering, University of California, Mail Code 1740, Berkeley, CA 94720-1740, USA
Abstract:
Glass fiber polymer composites have high strength, low cost, but suffer from poor performance in fatigue. Mechanisms for high-cycle (>104 cycles) fatigue failure in glass fiber composites consist primarily of matrix-dominated damage accumulation and growth that coalesce and propagate into the fibers resulting in ultimate fatigue failure. This investigation shows that the addition of small volume fractions of multi-walled carbon nanotubes (CNTs) in the matrix results in a significant increase in the high-cycle fatigue life. Cyclic hysteresis measured over each cycle in real time during testing is used as a sensitive indicator of fatigue damage. We show that hysteresis growth with cycling is suppressed when CNTs are present with resulting longer cyclic life. Incorporating CNTs into the matrix tends to inhibit the formation of large cracks since a large density of nucleation sites are provided by the CNTs. In addition, the increase in energy absorption from the fracture of nanotubes bridging across nanoscale cracks and nanotube pull-out from the matrix is thought to contribute to the higher fatigue life of glass composites containing CNTs. High-resolution scanning electron microscopy suggests possible mechanisms for energy absorption including nanotube pull-out and fracture. The distributed nanotubes in the matrix appear to inhibit damage propagation resulting in overall improved fatigue strength and durability.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号