首页 | 本学科首页   官方微博 | 高级检索  
     

基于小波变换的优化LDA人脸特征提取
引用本文:方杰,谭晓衡. 基于小波变换的优化LDA人脸特征提取[J]. 传感器与微系统, 2012, 31(5): 65-67
作者姓名:方杰  谭晓衡
作者单位:重庆大学通信与测控中心,重庆,400030
基金项目:中央高校基本科研业务费资助项目(CDJZR10160011);重庆市自然科学基金资助项目(2010BB2049)
摘    要:运用小波进行图像分解提取低频子带图,并利用优化的线性判别分析(LDA)算法寻找最优投影子空间,从而映射提取人脸特征,实现人脸的分类识别。该方法避免了传统LDA算法中类内离散度矩阵非奇异的要求,解决了边缘类重叠问题,具有更广泛的应用空间。实验表明:该方法优于传统的LDA方法和主分量分析(PCA)方法。

关 键 词:小波变换  线性判别分析  特征提取  人脸识别

Optimization LDA face feature extraction based on wavelet transform
FANG Jie , TAN Xiao-heng. Optimization LDA face feature extraction based on wavelet transform[J]. Transducer and Microsystem Technology, 2012, 31(5): 65-67
Authors:FANG Jie    TAN Xiao-heng
Affiliation:(Center of Communication and Tracking Telemetering & Command, Chongqing University,Chongqing 400030,China)
Abstract:Low frequency sub-band figures are extracted with wavelet transform,the optimal cast shadow space is found by using optimized linear discriminant analysis(LDA)algorithm,the optimal feature space is got.Face classification and identification are realized in the feature space.In this method,nonsingularity of within class scatter matrix became unnecessary,and the problem of edge overlap is also solved.So,it has better generalization ability comparing with traditional LDA algorithm.Experimental results show that this method is superior to the tranditional LDA and principle component analysis(PCA) method.
Keywords:wavelet transform  linear discriminant analysis(LDA)  feature extraction  face recognition
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号