首页 | 本学科首页   官方微博 | 高级检索  
     

基于信息熵的协同过滤算法
引用本文:张佳,林耀进,林梦雷,刘景华,李慧宗. 基于信息熵的协同过滤算法[J]. 山东大学学报(工学版), 2016, 46(2): 43-50. DOI: 10.6040/j.issn.1672-3961.2.2015.047
作者姓名:张佳  林耀进  林梦雷  刘景华  李慧宗
作者单位:1. 闽南师范大学计算机学院, 福建 漳州 363000;2. 安徽理工大学经济与管理学院, 安徽 淮南 232001
基金项目:国家自然科学基金资助项目(61303131,61379021);福建省自然科学基金资助项目(2013J01028);教育部人文社会科学研究青年基金资助项目(13YJCZH077);福建省高校杰出青年科研人才培养计划资助项目(JA14192)
摘    要:针对用户评分数据的稀疏性制约着系统的推荐质量的问题,提出了一种基于信息熵的协同过滤算法。首先定义了用户信息熵以反映用户评分分布和倾向程度;然后,利用大间隔的方法计算目标用户与其他用户的间隔距离,结合目标用户的信息熵,得到目标用户的近邻选择范围;最后,同时考虑用户的信息熵和用户间的相似性大小得到目标用户的近邻集合,以降低数据稀疏性对推荐结果的影响。试验结果表明:基于信息熵的协同过滤算法能够有效地提高推荐质量。

关 键 词:数据稀疏性  相似性  大间隔  近邻选择  协同过滤  信息熵  
收稿时间:2015-05-18

Entropy-based collaborative filtering algorithm
ZHANG Jia,LIN Yaojin,LIN Menglei,LIU Jinghua,LI Huizong. Entropy-based collaborative filtering algorithm[J]. Journal of Shandong University of Technology, 2016, 46(2): 43-50. DOI: 10.6040/j.issn.1672-3961.2.2015.047
Authors:ZHANG Jia  LIN Yaojin  LIN Menglei  LIU Jinghua  LI Huizong
Affiliation:1. School of Computer Science, Minnan Normal University, Zhangzhou 363000, Fujian, China;2. School of Economics and Management, Anhui University of Science and Technology, Huainan 232001, Anhui, China
Abstract:In the recommender system, the recommended quality was restricted by the sparsity of user rating data. To solve this problem, a novel entropy-based collaborative filtering algorithm was proposed. First, the definition of user entropy was given to reflect the rating distribution of users and their rating tendency degree. Then, the method of large margin was introduced to calculate the margin distance, and the neighbor selection range was determined via combining both of the active users entropy and margin distance with other users. Finally, neighbors were obtained by making full of the user entropy and the similarity between users, which could degrade the influence of the sparse rating data. Experimental results on two data sets showed that the proposed algorithm could improve the recommended quality effectively.
Keywords:data sparsity  similarity  large margin  entropy  collaborative filtering  neighbor selection  
本文献已被 CNKI 等数据库收录!
点击此处可从《山东大学学报(工学版)》浏览原始摘要信息
点击此处可从《山东大学学报(工学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号