首页 | 本学科首页   官方微博 | 高级检索  
     

混合遗传算法的电力系统无功优化
引用本文:苏琳,陆程,康积涛. 混合遗传算法的电力系统无功优化[J]. 西华大学学报(自然科学版), 2006, 25(3): 11-12,20
作者姓名:苏琳  陆程  康积涛
作者单位:西南交通大学电气工程学院,四川,成都,610031;郑州大学工程技术学院,河南,郑州,450015
摘    要:
针对遗传算法(GA)的局限性,提出了一种应用于电力系统无功优化问题的混合遗传算法(GASA)。实施了最优保留策略,改进交叉和变异操作,并结合模拟退火算法(SA)的Metropolis判别准则的复制策略,使寻优过程能够跳出局部最优解,从而形成了混合遗传算法。优化过程中考虑了电力系统无功优化自身特点,提高了计算效率。对IEEE30节点系统的仿真表明:该算法能够有效地提高收敛速度,避免早熟收敛。

关 键 词:无功优化  遗传算法  模拟退火
文章编号:1673-159X(2006)03-0011-02
收稿时间:2006-02-17
修稿时间:2006-02-17

Reactive Power Optimization of Power System Using Hybrid Genetic Algorithm
SU Lin,LU Cheng,KANG Ji-tao. Reactive Power Optimization of Power System Using Hybrid Genetic Algorithm[J]. Journal of Xihua University(Natural Science Edition), 2006, 25(3): 11-12,20
Authors:SU Lin  LU Cheng  KANG Ji-tao
Abstract:
In this paper a new hybrid genetic algorithm(GASA)for reactive power optimization is presented. Aiming at the limitation of genetic algorithm(GA), the optimized reserved strategy is used, and the cross and mutation method are improved. The hybrid genetic algorithm is formed combined with the Metropolis discrimination criteria of simulated annealing algorithm(SA), which can jump from local optimization solution. During the optimization, the self-features of reactive power optimization are considered, which will enhance the computational efficiency. Using the presented algorithm the reactive power optimization calculation for IEEE30-bus system is conducted, the results show that it can improve the speed of convergence, and avoid premature convergence.
Keywords:reactive power optimization  genetic algorithm  annealing simulation method
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号