首页 | 本学科首页   官方微博 | 高级检索  
     

准噶尔盆地温压系统演化与油气远源成藏
引用本文:马小伟,朱传真,林玉祥,舒永.准噶尔盆地温压系统演化与油气远源成藏[J].石油实验地质,2017,39(4):467-476.
作者姓名:马小伟  朱传真  林玉祥  舒永
作者单位:山东科技大学 地球科学与工程学院, 山东 青岛 266590
基金项目:国家自然科学基金(41172108)和国家油气重大专项(2016ZX05041005,2016ZX05001003)资助。
摘    要:准噶尔盆地温压系统的形成与演化对油气远源成藏具有明显的控制作用。以系统热力学理论为指导,在盆地温度场和压力场分析基础上,系统研究了盆地温压系统的特征、演化及其对油气远源成藏的控制作用。研究表明盆地隆起区具有高地温、高地温梯度和高大地热流的特征,坳陷区则相反;坳陷区普遍发育超压,并向盆地边缘呈不规则环状降低,盆地南部及腹部坳陷区发育强超压,盆地东部次之,西北缘以弱超压为主。垂向上盆地发育P-T3、J1-J1s和K1tg-E2-3a三套相对封闭的温压系统。海西期盆地沉降速率较快,P-T3期温压系统超压积聚;至燕山期构造运动强烈,凸起边缘切穿盖层的断裂活动频繁,地层温压场调整,油气突破盖层运移与聚集,是该区远源油气藏形成的主要时期;喜马拉雅期盆地主要为南降北升的掀斜运动,断裂活动微弱,相对封闭性温压系统的发育使油气保存条件优越。平面上远源岩性油气藏主要分布在盆地西北缘、莫北―莫索湾地区、陆梁隆起及东部隆起等低温压场区,是准噶尔盆地远源油气藏勘探的有利区。 

关 键 词:温压系统    温度场    压力场    油气远源成藏    准噶尔盆地
收稿时间:2017-01-15

Evolution of the temperature-pressure system and far-source hydrocarbon accumulation in Junggar Basin
Affiliation:College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
Abstract:The controls of the formation and evolution of the temperature-pressure system on a far-source hydrocarbon accumulation in the Junggar Basin were studied systematically based on the analyses of temperature and pressure fields and guided by the theory of system thermodynamics. The uplifted area of the basin is featured by high temperature, high temperature gradient and high heat flow, while the depressed area is opposite. Overpressure developed in the depressed area and decreases in irregular rings to the edge of the basin. Strong overpressure developed in the south of the basin and the central depressed area, medium overpressure developed in the east of the basin, and weak overpre-ssure developed on the northwestern margin of the basin. Vertically there are three sets of relatively closed temperature-pressure systems in the basin: the Permian-Upper Triassic system, the Lower Jurassic system and the Cretaceous-Paleogene system. The sedimentation rate of the basin was relatively fast during the Hercynian period, and the energy accumulation of temperature and pressure took place from the Permian to the Late Triassic. Tectonic movements were intense in the Yanshanian period, and fracture activities cut through cap rocks frequently at the edge of the uplifts. The temperature-pressure field adjusted, leading to oil and gas migration and accumulation through cap rocks. It was the main period for the formation of far-source reservoirs. The basin was tilting, descending in the south and uplifting in the north, in the Himalayan period, and fault activity was weak. The temperature-pressure system was relatively stable and helped oil and gas preservation. The far source lithologic oil and gas reservoirs are mainly distributed in the low-energy field of temperature-pressure in the horizontal, such as the northwest of the basin, Mobei-Mosuowan area, Luliang uplift and the eastern uplift. These areas are favorable for exploration of far-source oil and gas reservoirs in the Junggar Basin. 
Keywords:
本文献已被 CNKI 等数据库收录!
点击此处可从《石油实验地质》浏览原始摘要信息
点击此处可从《石油实验地质》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号