Quadratic correlation filter design methodology for target detection and surveillance applications |
| |
Authors: | Mahalanobis Abhijit Muise Robert R Stanfill S Robert |
| |
Affiliation: | Lockheed Martin, Mail Stop 450, 5600 Sandlake Road, Orlando, Florida 32819-8907, USA. abhijit.mahalanobis@lmco.com |
| |
Abstract: | ![]() A novel method is presented for optimization of quadratic correlation filters (QCFs) for shift-invariant target detection in imagery. The QCFs are quadratic classifiers that operate directly on the image data without feature extraction or segmentation. In this sense, the QCFs retain the main advantages of conventional linear correlation filters while offering significant improvements in other respects. For example, multiple correlators work in parallel to optimize jointly the QCF performance metric and produce a single combined output, which leads to considerable simplification of the postprocessing scheme. In addition, QCFs also yield better performance than their linear counterparts for comparable throughput requirements. The primary application considered is target detection in infrared imagery for surveillance applications. In the current approach, the class-separation metric is formulated as a Rayleigh quotient that is maximized by the QCF solution. It is shown that the proposed method results in considerable improvement in performance compared with a previously reported QCF design approach and many other detection techniques. The results of independent tests and evaluations at the U.S. Army's Night Vision Laboratory are also presented. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|