首页 | 本学科首页   官方微博 | 高级检索  
     


Purification, characterization, and gene cloning of glycerol dehydrogenase from Hansenula ofunaensis, and its expression for production of optically active diol
Authors:Yamada-Onodera Keiko  Nakajima Akira  Tani Yoshiki
Affiliation:Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0192, Japan. onoderak@bs.naist.jp
Abstract:Optically active alcohol is an important building block as a versatile chiral synthon for the asymmetric synthesis of pharmaceuticals and agrochemicals. We purified and characterized glycerol dehydrogenase from Hansenula ofunaensis and prepared optically active 1,2-octanediol using a recombinant Escherichia coli harboring the glycerol dehydrogenase gene. The deduced amino acid sequence was investigated for identities with those of other alcohol dehydrogenases in the NCBI databank. The identification of the unknown product of a resting-cell reaction was performed by GC-MS. In the deduced amino acid sequence composed of 376 residues, the NAD(H) binding pattern and cysteine residues that correspond to the cysteine ligands at the zinc atom were conserved as they are in alcohol dehydrogenases from other origins. Glycerol dehydrogenase from Hansenula polymorpha DL-1 (Pichia angusta, DDBJ/EMBL/GenBank accession no. BAD32688) had the highest identity to our enzyme, showing 73% identity. Our glycerol dehydrogenase catalyzed the NAD(+)-dependent oxidation of long-chain secondary alcohols such as 1,2-pentanediol, 1,2-hexanediol, 1,2-heptanediol, and 1,2-octanediol. Activities toward 2,4-pentanediol and 2,5-hexanediol were hardly detected. From these results, it was confirmed that our enzyme requires two hydroxyl groups on adjacent carbon atoms for oxidation. 2,3-Pentanedione, 2,3-hexanedione, and 3,4-hexanedione were significantly reduced. The transformants oxidized only (R)-1,2-octanediol in 50 mM racemate (R:S=52:48), and produced (S)-1,2-octanediol (24 mM, <99.9% e.e.) after 24 h of incubation. The reaction product was suggested to be 1-hydroxy-2-octanone by GC-MS, which showed secondary hydroxyl groups oxidized. Glycerol dehydrogenase from H. ofunaensis could be useful for the production of long-chain optically active secondary alcohols.
Keywords:glycerol dehydrogenase  long-chain secondary alcohol dehydrogenase  optically active 1  2-octanediol production  chiral diol production  chiral alkanediol
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号