首页 | 本学科首页   官方微博 | 高级检索  
     


Microstructure,mechanical and anti-ablation properties of SiCnw/PyC core-shell networks reinforced C/C–ZrC–SiC composites fabricated by a multistep method of chemical liquid-vapor deposition
Affiliation:1. State Key Laboratory of Solidification Processing, Shaanxi Province Key Laboratory of Fiber Reinforced Light Composite Materials, Northwestern Polytechnical University, Xi’an 710072, China;2. Department of Mechanical Engineering, California State University, Los Angeles, CA 90032, USA;1. State Key Laboratory of Solidification Processing, Carbon/Carbon Composites Research Center, Northwestern Polytechnical University, Xi’an 710072, China;2. College of Materials and Mineral Resources, Xi’an University of Architecture and Technology, Xi’an 710055, China
Abstract:C/C–ZrC–SiC composites reinforced by SiC nanowire (SiCnw)/pyrocarbon (PyC) core-shell networks were prepared by a multistep method of chemical liquid-vapor deposition (CLVD). The microstructure, mechanical property and ablation resistance were researched. The investigations presented that the PyC was deposited on the SiC nanowires, and the micro-scale core-shell structures were produced. Moreover, these micro-scale structures not only connected with the fibers and matrices, but also filled the pores in the composites. In contrast with C/C–ZrC–SiC composites, the flexural modulus and strength of SiCnw/PyC-C/C–ZrC–SiC composites increased by 36.91% and 44.53%, and the fracture mode was changed from the brittle to pseudo-plastic fracture. After the oxyacetylene torch ablation at two temperatures for 90s, the composites strengthened by SiCnw/PyC core-shell possessed a better resistant ablation. At ablation temperature of 2300 °C, the mass loss rate and linear reduction rate of the composites with core-shell networks decreased by 66.18% and 57.55% in contrast with the non-reinforced composites, and declined by 56.46% and 57.48% at ablation temperature of 3000 °C. The obvious decrease of ablation rates was ascribed to the dense microstructure, the small coefficient of thermal expansion (CTE), the good thermal conductivity, and the resistant ablation roles of SiCnw/PyC core-shell systems.
Keywords:C/C–ZrC–SiC composites  SiCnw/PyC core-shell networks  Microstructure  Property  Chemical liquid vapor deposition
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号