首页 | 本学科首页   官方微博 | 高级检索  
     

基于优化GA-BP神经网络的金融产品营销预测
引用本文:金 鑫,潘宜安,吴 靖. 基于优化GA-BP神经网络的金融产品营销预测[J]. 通信学报, 2014, 35(Z2): 4-25. DOI: 10.3969/j.issn.1000-436x.2014.z2.004
作者姓名:金 鑫  潘宜安  吴 靖
作者单位:中央财经大学 信息学院,北京 100081
基金项目:国家自然科学基金资助项目(61273293)
摘    要:传统BP神经网络存在着网络结构参数确定过于依赖经验、易于陷入局部解等缺陷,为了改进BP神经网络模型的应用缺陷,提出优化GA-BP算法,通过GA算法优化BP神经网络拓扑结构和网络参数初始值的选取过程,并且为了验证模型的可行性,以某银行短期理财产品营销的客户历史数据作为实证研究对象,并通过与BP神经网络模型的对比实验,验证该模型可以更精确地预测银行理财产品的客户营销结果。实验结果表明将该模型用于对金融产品营销数据的仿真计算,可以更精确地预测未来营销结果。

关 键 词:GA-BP;银行营销;优化

Financial production marketing predictionbased on optimization GA-BP neural network
Xin JIN,Yi-an PAN,Jing WU. Financial production marketing predictionbased on optimization GA-BP neural network[J]. Journal on Communications, 2014, 35(Z2): 4-25. DOI: 10.3969/j.issn.1000-436x.2014.z2.004
Authors:Xin JIN  Yi-an PAN  Jing WU
Affiliation:School of Information,Central University of Finance and Economics,Beijing 100081,China
Abstract:The traditional BP neural network has some application problems. For example, the network structure parameter is too dependent on experience and easy to fall into local solution. In order to improve the application defects of BP neural network model, the optimization GA-BP algorithm to optimize BP neural network topology and the selection process of network initial parameter value is proposed. In order to verify the feasibility of the model, marketing customer historical data of a bank short-term financial products as the research object is used to validate the model which could more accurately predict the customer compared with BP neural network model. The test results show that the model could be applied to analysis financial product marketing data and more accurately predict the future marketing results.
Keywords:GA-BP   bank promotion   optimization
点击此处可从《通信学报》浏览原始摘要信息
点击此处可从《通信学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号