首页 | 本学科首页   官方微博 | 高级检索  
     

基于Lukasiewicz t-模的模糊双向联想记忆网络的有效学习算法
引用本文:曾水玲,徐蔚鸿. 基于Lukasiewicz t-模的模糊双向联想记忆网络的有效学习算法[J]. 计算机应用, 2006, 26(12): 2988-2990
作者姓名:曾水玲  徐蔚鸿
作者单位:吉首大学,数学与计算机科学学院,湖南,吉首,416000;长沙理工大学,计算机与通信工程学院,湖南,长沙,410077;吉首大学,数学与计算机科学学院,湖南,吉首,416000;长沙理工大学,计算机与通信工程学院,湖南,长沙,410077
基金项目:国家自然科学基金;湖南省自然科学基金;湖南省教育厅科研项目
摘    要:利用t-模的伴随蕴涵算子,为基于Max和TL合成的模糊双向联想记忆网络Max-TLFBAM提供了一种新的学习算法,此处TL是Lukasiewicz t-模算子。从理论上严格证明了,只要存在有连接权矩阵对使得任意给定的模式对集成为Max-TLFBAM的平衡态集,则依该学习算法所确定的连接权矩阵对是所有这样的连接权矩阵对中的最大者。并用实验验证该学习算法的有效性。

关 键 词:伴随蕴涵算子  模糊双向联想记忆网络  学习算法  t-模
文章编号:1001-9081(2006)12-2988-03
收稿时间:2006-06-26
修稿时间:2006-06-262006-08-17

Efficient learning algorithm for Fuzzy bi-directional associative memory based on Lukasiewicz's t-Norm
ZENG Shui-ling,XU Wei-hong. Efficient learning algorithm for Fuzzy bi-directional associative memory based on Lukasiewicz's t-Norm[J]. Journal of Computer Applications, 2006, 26(12): 2988-2990
Authors:ZENG Shui-ling  XU Wei-hong
Affiliation:1. College of Mathematics and Computer Science, Jishou University, Jishou Hunan 416000, China; 2. College of Computer and Communications Engineering, Changsha University of Science and Technology, Changsha Hunan 410077, China
Abstract:Taking advantage of the concomitant implication operator of T_ L , which is a t-norm, a simple efficient learning algorithm was proposed for the fuzzy bi-directional associative memory based on fuzzy composition of Max and T_ L (Max-T_ L FBAM). It is proved theoretically that, if there is a connected weight matrix which make arbitrarily given pattern pairs set become stability state set of Max-T_ L FBAM, then the proposed learning algorithm can find the maximum of all connected weight matrices . An experiment was given to test the effectiveness of the presented learning algorithm.
Keywords:concomitant implication operator   Fuzzy bi-directional associative memory   learning algorithm   t-norm
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号