首页 | 本学科首页   官方微博 | 高级检索  
     


Approximate algorithms for the knapsack problem on parallel computers
Authors:P S Gopalakrishnan  I V Ramakrishnan  L N Kanal
Abstract:Computing an optimal solution to the knapsack problem is known to be NP-hard. Consequently, fast parallel algorithms for finding such a solution without using an exponential number of processors appear unlikely. An attractive alternative is to compute an approximate solution to this problem rapidly using a polynomial number of processors. In this paper, we present an efficient parallel algorithm for finding approximate solutions to the 0–1 knapsack problem. Our algorithm takes an , 0 < < 1, as a parameter and computes a solution such that the ratio of its deviation from the optimal solution is at most a fraction of the optimal solution. For a problem instance having n items, this computation uses O(n5/2/3/2) processors and requires O(log3n + log2nlog(1/)) time. The upper bound on the processor requirement of our algorithm is established by reducing it to a problem on weighted bipartite graphs. This processor complexity is a significant improvement over that of other known parallel algorithms for this problem.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号