首页 | 本学科首页   官方微博 | 高级检索  
     


Differential quadrature solution for the free vibration analysis of laminated conical shells with variable stiffness
Authors:Chih-Ping Wu  Chia-Ying Lee
Affiliation:Department of Civil Engineering, National Cheng Kung University, Tainan 70101, Taiwan, ROC
Abstract:The free vibration analysis of laminated conical shells with variable stiffness is presented using the method of differential quadrature (DQ). The stiffness coefficients are assumed to be functions of the circumferential coordinate that may be more close to the realistic applications. The first-order shear deformation shell theory is used to account for the effects of transverse shear deformations. In the DQ method, the governing equations and the corresponding boundary conditions are replaced by a system of simultaneously algebraic equations in terms of the function values of all the sampling points in the whole domain. These equations constitute a well-posed eigenvalue problem where the total number of equations is identical to that of unknowns and they can be solved readily. By vanishing the semivertex angle (α) of the conical shell, we can reduce the formulation of laminated conical shells to that of laminated cylindrical shells of which stiffness coefficients are the constants. Besides, the present formulation is also applicable to the analysis of annular plates by letting α=π/2. Illustrative examples are given to demonstrate the performance of the present DQ method for the analysis of various structures (annular plates, cylindrical shells and conical shells). The discrepancies between the analyses of laminated conical shells considering the constant stiffness and the variable stiffness are mainly concerned.
Keywords:Vibration  Natural frequency  Conical shells  The differential quadrature method  The first-order shear deformation theory
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号