首页 | 本学科首页   官方微博 | 高级检索  
     


Natural frequencies of composite plates with random material properties using higher-order shear deformation theory
Authors:B. N. Singh   D. Yadav  N. G. R. Iyengar
Affiliation:Department of Aerospace Engineering, Indian Institute of Technology, Kanpur-208016, India
Abstract:Composites are known to display a considerable amount of scatter in their material properties due to large number of parameters associated with the manufacturing and fabrication processes. In the present work, the material properties have been taken as random variables for accurate prediction of the system behavior. Higher order shear theory including rotatory inertia effects has been accounted for in the system dynamic equations. A first order perturbation technique has been employed to obtain the solution of the governing equations. An approach has been outlined for obtaining closed form expressions for the variances of eigen solutions. The effects of side to thickness ratio and variation in standard deviation of the material properties have been investigated for cross-ply symmetric and anti-symmetric laminates. The mean and standard deviations of the first five natural frequencies have been worked out for laminated rectangular plates with all edges simply supported. The higher order shear deformation theory results have been validated with Monte Carlo simulation results and compared with the results based on classical laminate and first order shear deformation theories.
Keywords:Composite plates   Random material properties   Free vibrations   Second order statistics
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号