摘 要: | 针对乳腺X光医学图像多类分类精度普遍较低的问题,提出了一种基于边缘检测的医学图像多类分类新方法。首先对乳腺X光医学图像进行预处理包括图像去噪和图像增强,再通过边缘检测方法,获取乳腺X光医学图像中的肿块区域,对检测到的肿块区域使用灰度共生矩阵提取特征,对于提取到的特征,采用支持向量机(Support vector machine,SVM)的方法进行分类;对于检测不到肿块区域的乳腺X光医学图像可直接分类为无乳腺癌(即正常)类。实验结果表明,与传统的支持向量机多类分类算法相比,基于边缘检测的医学图像多类分类新方法在乳腺X光医学图像上具有更高的分类精度。
|