首页 | 本学科首页   官方微博 | 高级检索  
     

ReliefF-SVM RFE组合式特征选择人脸识别
引用本文:孔英会,张少明. ReliefF-SVM RFE组合式特征选择人脸识别[J]. 计算机工程与应用, 2013, 49(11): 169-171
作者姓名:孔英会  张少明
作者单位:华北电力大学 电子与通信工程系,河北 保定 071003
摘    要:
针对人脸识别中因特征个数较多对识别的实时性和准确性影响较大的问题,提出了ReliefF-SVM RFE组合式特征选择的人脸识别方法。利用离散余弦变换提取特征和ReliefF对人脸图像特征集做特征初选,降低特征维数空间,再用改进的SVM RFE(Support Vector Machine Recursive Feature Elimination)选择最优特征,解决了利用SVM RFE特征选择时因特征数多而算法需多次训练耗时长的问题。对训练得到的特征排序表采用交叉留一验证方法选取最优子集,再由SVM分类识别。在UMIST人脸库上实验证明,可以在特征数为52时,达到98.84%的识别率,识别时间仅需0.037 s。

关 键 词:人脸识别  支持向量机回归特征消除(SVMRFE)  ReliefF  离散余弦变换  特征选择  

Combined feature selection of ReliefF-SVM RFE used in face recognition
KONG Yinghui,ZHANG Shaoming. Combined feature selection of ReliefF-SVM RFE used in face recognition[J]. Computer Engineering and Applications, 2013, 49(11): 169-171
Authors:KONG Yinghui  ZHANG Shaoming
Affiliation:Department of Electronics and Communication Engineering, North China Electric Power University, Baoding, Hebei 071003, China
Abstract:
To solve the problem that too much features have great effects on the instantaneity and accuracy of face recognition, a method named combined facial feature selection based on ReliefF-SVM RFE is proposed. The proposed method uses DCT extract facial feature and ReliefF select feature to reduce the?feature?dimension space initially, then uses improved SVM RFE to select optimal feature. This method solves the problem that the SVM REF feature selection consums long time because of training much features repeatedly. Finally, it uses leave-one-out method to select optimal feature subset from feature ranking table, and classification by SVM. Experiments are performed on UMIST facial database, accuracy of 98.84% is achieved when facial features are 52, recognition time only needs 0.037 s.
Keywords:face recognition  Support Vector Machine Recursive Feature Elimination(SVM RFE)  ReliefF  discrete cosine transform  feature selection  
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号