首页 | 本学科首页   官方微博 | 高级检索  
     

基于差分进化的BP神经网络预测混沌时间序列
引用本文:邬月春,王铁君. 基于差分进化的BP神经网络预测混沌时间序列[J]. 计算机工程与应用, 2013, 49(8): 160-163
作者姓名:邬月春  王铁君
作者单位:1.兰州交通大学 自动化与电气工程学院,兰州 7300702.西北民族大学 数学与计算机科学学院,兰州 730030
摘    要:针对BP神经网络预测模型收敛速度慢和容易陷入局部极小值的缺点,将差分进化算法和神经网络结合起来,提出了一种基于差分进化算法的BP神经网络预测混沌时间序列的方法,利用差分进化算法的全局寻优能力对BP神经网络的权值和阈值进行优化,然后训练BP神经网络预测模型求得最优解,将该预测方法用到3个典型的混沌时间序列进行算法的有效性验证,并与BP算法的预测精度进行了比较,仿真结果表明该方法对混沌时间序列预测具有更好的非线性拟合能力和更高的预测准确性。

关 键 词:混沌时间序列  反向传播(BP)神经网络  差分进化  预测  

Prediction for chaotic time series of BP neural network based on differential evolution
WU Yuechun,WANG Tiejun. Prediction for chaotic time series of BP neural network based on differential evolution[J]. Computer Engineering and Applications, 2013, 49(8): 160-163
Authors:WU Yuechun  WANG Tiejun
Affiliation:1.School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China2.School of Mathematics and Computer Science, Northwest University for Nationalities, Lanzhou 730030, China
Abstract:A prediction method for chaotic time series of BP neural based on DE is proposed to overcome the problems such as long computing time and easy to fall into local minimum by incorporating Differential Evolution(DE) and neural network. DE is used to optimize the weights and thresholds of BP neural network, and the BP neural network is used to search for the optimal solution. The efficiency of the proposed prediction method is tested by the simulation of three typical nonlinear systems, and the precision of this algorithm is compared with BP algorithms. The simulation results show that the proposed method has better nonlinear fitting ability and higher forecasting accuracy.
Keywords:chaotic time series  Back Propagation(BP) neural  Differential Evolution(DE)  prediction  
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号