首页 | 本学科首页   官方微博 | 高级检索  
     

基于频谱分析和卷积神经网络的高速轴向柱塞泵空化故障诊断
引用本文:魏晓良,潮群,陶建峰,刘成良,王立尧. 基于频谱分析和卷积神经网络的高速轴向柱塞泵空化故障诊断[J]. 液压与气动, 2021, 0(7): 7-13. DOI: 10.11832/j.issn.1000-4858.2021.07.002
作者姓名:魏晓良  潮群  陶建峰  刘成良  王立尧
作者单位:上海交通大学机械系统与振动国家重点实验室, 上海 200240
基金项目:国家重点研发计划(2017YFD0700602);中国博士后科学基金(2019M660086)
摘    要:针对高速轴向柱塞泵不同空化故障等级诊断依赖人工特征提取、识别准确率低的问题,提出了一种融合振动信号频谱分析和卷积神经网络的诊断方法.采集不同空化等级情况下柱塞泵壳体振动信号,对连续的振动数据进行切片并作频谱分析,获得频谱图作为数据集;利用二维卷积神经网络对不同空化等级的信号频谱图进行分类.为提高所提方法的鲁棒性,采用带...

关 键 词:高速轴向柱塞泵  空化故障诊断  频谱分析  卷积神经网络
收稿时间:2019-12-02

Cavitation Fault Diagnosis of High-speed Axial Piston Pump Based on Spectrum Analysis and Convolutional Neural Network
WEI Xiao-liang,CHAO Qun,TAO Jian-feng,LIU Cheng-liang,WANG Li-yao. Cavitation Fault Diagnosis of High-speed Axial Piston Pump Based on Spectrum Analysis and Convolutional Neural Network[J]. Chinese Hydraulics & Pneumatics, 2021, 0(7): 7-13. DOI: 10.11832/j.issn.1000-4858.2021.07.002
Authors:WEI Xiao-liang  CHAO Qun  TAO Jian-feng  LIU Cheng-liang  WANG Li-yao
Affiliation:State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai200240
Abstract:Traditional fault diagnosis of high-speed axial piston pumps relies on hand-crafted feature extraction and suffers from low recognition accuracy for different levels of cavitation intensity. Therefore, a diagnostic method that combines spectrum analysis of vibration signal and convolutional neural network (CNN) is proposed. Vibration signals are collected on the pump housing under different levels of cavitation intensity. The continuous vibration data is segmented into a series of data frames, followed by a spectral analysis to generate spectrograms which are fed to a 2D CNN model for cavitation classification. To improve the robustness of the proposed method, the noise-related frequencies in the spectrograms are suppressed by band-pass filtering method after spectrum analysis. The results show that the proposed model can achieve high recognition accuracy of cavitation conditions for input vibration signals with different signal-to-noise ratios.
Keywords:high-speed axial piston pump  cavitation fault diagnosis  spectrum analysis  convolutional neural network  
本文献已被 CNKI 等数据库收录!
点击此处可从《液压与气动》浏览原始摘要信息
点击此处可从《液压与气动》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号