首页 | 本学科首页   官方微博 | 高级检索  
     


Continuous emulsion polymerization of styrene in a single Couette–Taylor vortex flow reactor
Authors:Xue Wei  Hiroshi Takahashi  Syuzaemon Sato  Mamoru Nomura
Abstract:The effect of the geometrical and operational parameters on the mixing characteristics of a Couette–Taylor vortex flow reactor (CTVFR) were investigated and were correlated with the same parameters by using the tank‐in‐series model. Continuous emulsion polymerization of styrene was conducted at 50°C in a CTVFR to clarify the effects on kinetic behavior and reactor performance of operational parameters such as rotational speed of inner cylinder (Taylor number), reactor mean residence time, and emulsifier and initiator concentrations in the feed streams. It was found that steady‐state monomer conversion and particle number could be freely varied only by varying the Taylor number. In order to explain the observed kinetic behavior of this polymerization system, a mathematical model was developed by combining the empirical correlation of the mixing characteristics of a CTVFR and a previously proposed kinetic model for the continuous emulsion polymerization of styrene in continuous stirred tank reactors connected in series (CSTRs). On the basis of these experimental results, it was concluded that a CTVFR is suitable for the first reactor (prereactor) of a continuous emulsion polymerization reactor system. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1931–1942, 2001
Keywords:styrene  Taylor vortex flow  mixing characteristics  continuous reactor, continuous emulsion polymerization  emulsion polymerization
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号