首页 | 本学科首页   官方微博 | 高级检索  
     

基于黑板模型的多智能体合作学习
引用本文:韩伟,韩忠愿. 基于黑板模型的多智能体合作学习[J]. 计算机工程, 2007, 33(22): 42-44,4
作者姓名:韩伟  韩忠愿
作者单位:南京财经大学信息工程学院,南京,210046;南京财经大学信息工程学院,南京,210046
摘    要:Q学习算法要求智能体无限遍历每个状态-动作转换,因此在涉及状态-动作空间非常大的应用问题时,导致收敛速度非常慢。借助多智能体的合作学习,智能体之间基于黑板模型的方法通过开关函数相互协调合作,可以更快地定位那些有效的状态-动作转换,避免了无效的更新,从而以较小的学习代价加快了Q表的收敛速度。

关 键 词:多智能体系统  合作学习  黑板模型
文章编号:1000-3428(2007)22-0042-03
修稿时间:2006-11-25

Multiagent Learning Based on Black-board Model
HAN Wei,HAN Zhong-yuan. Multiagent Learning Based on Black-board Model[J]. Computer Engineering, 2007, 33(22): 42-44,4
Authors:HAN Wei  HAN Zhong-yuan
Affiliation:College of Information Science, Nanjing University of Financial and Economics, Nanjing 210046
Abstract:Q learning requires each state-action transform be visited infinitely, which limits its application when comes to large state-action space. This paper puts forward a black-board-model based multiagents cooperation learning algorithm. Agents cooperate and coordinate by a bull function which is defined in state-action space. By this bull function, agents can find those effective update more quickly and thus avoid those useless updates. Simulation proves the method can speed up the learning process at lower cost.
Keywords:multiagents system   cooperation learning   black-board model
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机工程》浏览原始摘要信息
点击此处可从《计算机工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号