首页 | 本学科首页   官方微博 | 高级检索  
     

基于模糊C均值与Markov随机场的图像分割
引用本文:蔡涛,徐国华,徐筱龙. 基于模糊C均值与Markov随机场的图像分割[J]. 计算机工程, 2007, 33(20): 34-36,3
作者姓名:蔡涛  徐国华  徐筱龙
作者单位:华中科技大学交通学院水下作业实验室,武汉,430073;华中科技大学交通学院水下作业实验室,武汉,430073;华中科技大学交通学院水下作业实验室,武汉,430073
基金项目:国家高技术研究发展计划(863计划)
摘    要:针对传统模糊C-均值(FCM)图像分割算法没有考虑图像空间连续性的缺点,提出一种改进的空间约束FCM分割算法。该算法引入了Markov随机场理论中类别标记的伪似然度近似策略,将像素特征域相似性同空间域相邻性有机地结合起来,给出了新的像素样本聚类目标函数。实验证明,该算法能大大提高分割性能并改善分割的视觉效果。

关 键 词:模糊C均值  Markov随机场  伪似然度  图像分割
文章编号:1000-3428(2007)20-0034-03
修稿时间:2006-10-29

Image Segmentation Based on FCM and Markov Random Fields
CAI Tao,XU Guo-hua,XU Xiao-long. Image Segmentation Based on FCM and Markov Random Fields[J]. Computer Engineering, 2007, 33(20): 34-36,3
Authors:CAI Tao  XU Guo-hua  XU Xiao-long
Affiliation:(Laboratory of Underwater Engineering, Traffic Science & Engineering College, Huazhong University of Science & Technology, Wuhan 430073)
Abstract:To overcome the defects of image segmentation by classic fuzzy C-means(FCM) clustering that considers nothing about image continuity,this paper introduces a new spatially constrained FCM image segmentation algorithm.The pseudo-likelihood of labeling is adopted in this algorithm to combine spectral similarity and spatial neighboring of image pixels.A new objective function is proposed and minimized.The experiments are conducted on simulated gray images and real color images.Experimental results show that the proposed approach is more effective and has better performance.
Keywords:fuzzy C-means(FCM)  Markov random fields(MRF)  pseudo-likelihood  image segmentation
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机工程》浏览原始摘要信息
点击此处可从《计算机工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号