首页 | 本学科首页   官方微博 | 高级检索  
     

一种大尺度Gauss模糊的快速采样算法
引用本文:郭建林,李爱玲. 一种大尺度Gauss模糊的快速采样算法[J]. 中国科学:信息科学, 2011, 0(10)
作者姓名:郭建林  李爱玲
作者单位:安阳工学院计算机科学与信息工程学院;
摘    要:针对大模板Gauss模糊的传统算法计算复杂度较高的缺点,提出了一种基于快速采样的新算法,将计算复杂度从O(N2)降到O(N)级别.利用极大似然估计理论,对传统Gauss模板和采样模板进行分析,给出了采样算法和传统算法的联系与区别.实验表明,新算法在极大的提高算法的速度的同时,可以将两者之间的能量误差控制在1%左右,当采样点等于10N时,人眼基本无法察觉两种算法的差异.

关 键 词:Gauss模糊  Gauss采样  极大似然估计  

A fast Gaussian blur with large scale mask based on sampling theory
GUO JianLin , LI AiLing. A fast Gaussian blur with large scale mask based on sampling theory[J]. Scientia Sinica Informationis, 2011, 0(10)
Authors:GUO JianLin & LI AiLing
Affiliation:GUO JianLin & LI AiLing Department of Computer and Information,Anyang Technology University,Anyang 455000,China
Abstract:High computational complexity is a great disadvantage for traditional algorithm of Gaussian blur,especially where large scale mask involves.A new algorithm is proposed based on fast sampling theory,which reduces computational complexity from O(N 2) level to O(N) level.A thorough analysis is applied between traditional mask and sampling mask by using the max likelihood estimation theory.The analysis results reveal the connections and differences between the new algorithm and the old one.Experiments show that...
Keywords:Gaussian blur  Gaussian distribution sampling  max likelihood estimation  
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号