Abstract: | Precise control of stator current is essential to high performance field orientation controlled induction motor drives. Any current error degrades the performance of the drive in the same way as incorrect tuning of field orientation. Previous research has shown that accurate current control can be achieved with intelligent but complex control algorithms. This paper presents a new current control scheme which can achieve high accuracy and fast dynamic response but which is very simple for microprocessor implementation. The scheme was derived using the discrete state space modelling of the induction motor. The control law does not require knowledge of rotor flux and was independent of the field orientation control tuning. Good static and dynamic performances were obtained in both the simulation and experimental verifications. The results also show that the leakage inductance model error might cause a current ripple. However, this parameter can be tuned to its correct value easily by inspecting the current response. |