首页 | 本学科首页   官方微博 | 高级检索  
     


Isothermal section of the Er–Fe–Al ternary system at 800 °C
Authors:M Jemmali  S Walha  M Pasturel  O Tougait  R Ben Hassen  H Noël
Affiliation:1. Unité de Recherche de Chimie des Matériaux, ISSBAT, Université de Tunis ElManar 9, Avenue Dr. Zoheir Safi, 1006 Tunis, Tunisia;2. Laboratoire des Sciences des Matériaux et d’Environnement, Faculté des Sciences de Sfax, BP 1171, 3000 Sfax, Tunisia;3. Laboratoire de Chimie de Solide et Matériaux, Sciences Chimiques de Rennes, UMR 6226 CNRS-Université Rennes 1, Avenue du Général Leclerc, 35042 Rennes, France;1. Department of Materials Science & Engineering, Northwestern University, Evanston, IL 60208, USA;2. Department of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA;3. School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China;1. Thermochemistry of Materials Scientific Research Centre, NUST MISIS, Moscow, Russia;2. Department of Certification and Analytical Control, NUST MISIS, Moscow, Russia;3. Hampton Thermodynamics Ltd, Hampton, UK;4. BCAST, Brunel University London, Uxbridge, UB8 2AD, UK;1. Faculté des Sciences de Sfax, B.P. 1171, 3000 Sfax, Tunisia;2. Institut Néel & Université Grenoble Alpes, B.P. 166, 38042 Grenoble Cedex 9, France;3. Laboratoire des Technologies des Systèmes Smart, C.R.I. Multimédia et Traitement Numérique des Données, Technopôle de Sfax, B.P 275, 3029 Sfax, Tunisia;1. Leibniz Institute for Solid State and Materials Research Dresden, Helmholtzstr. 20, 01069, Dresden, Germany;2. Ivan Franko National University of Lviv, Kyrila and Mefodiya Str., 6, 79005, Lviv, Ukraine;1. Thermochemistry of Materials Scientific Research Centre, NUST MISIS, Leninsky prosp. 4, 119049 Moscow, Russia;2. Hampton Thermodynamics Ltd, Hampton, UK;3. BCAST, Brunel University London, Uxbridge, UB8 2AD, UK
Abstract:Physico-chemical analysis techniques, including X-ray diffraction and Scanning Electron Microscope–Energy Dispersive X-ray Spectroscopy, were employed to construct the isothermal section of the Er–Fe–Al system at 800 °C. At this temperature, the phase diagram is characterized by the formation of five intermediate phases, ErFe12?xAlx with 5  x  8 (ThMn12-type), ErFe1+xAl1?x with ?0.2  x  0.75 (MgZn2-type), ErFe3?xAlx with 0.5 < x  1 (DyFe2Al-type), Er2Fe17?xAlx with 4.74  x  5.7 (TbCu7-type) and Er2Fe17?xAlx with 5.7 < x  9.5 (Th2Zn17-type), seven extensions of binaries into the ternary system; ErFexAl3?x with x < 0.5 (Au3Cu-type), ErFexAl2?x with x  0.68 (MgCu2-type), Er2FexAl1?x with x  0.25 (Co2Si-type), ErFe2?xAlx with x  0.5 (MgCu2-type), ErFe3?xAlx with x  0.5 (Be3Nb-type), Er6Fe23?xAlx with x  8 (Th6Mn23-type), and Er2Fe17?xAlx with x  4.75 (Th2Ni17-type) and one intermetallic compound; the ErFe2Al10 (YbFe2Al10-type).
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号