首页 | 本学科首页   官方微博 | 高级检索  
     


Optimal sizing of autonomous hybrid energy system using supply‐demand‐based optimization algorithm
Authors:Fahd A Alturki  Abdullrahman A Al‐Shamma'a  Hassan M H Farh  Khalil AlSharabi
Abstract:Hybrid energy systems (HESs) comprising photovoltaic (PV) arrays and wind turbines (WTs) are remarkable solutions for electrifying remote areas. These areas commonly fulfil their energy demands by means of a diesel genset (DGS). In the present study, a novel computational intelligence algorithm called supply‐demand‐based optimization (SDO) is applied to the HES sizing problem based on long‐term cost analysis. The effectiveness of SDO is investigated, and its performance is compared with that of the genetic algorithm (GA), particle swarm optimization (PSO), gray wolf optimizer (GWO), grasshopper optimization algorithm (GOA), flower pollination algorithm (FPA), and big‐bang‐big‐crunch (BBBC) algorithm. Three HES scenarios are implemented using measured solar radiation, wind speed, and load profile data to electrify an isolated village located in the northern region of Saudi Arabia. The optimal design is evaluated on the basis of technical (loss of power supply probability LPSP]) and economic (annualized system cost ASC]) criteria. The evaluation addresses two performance indicators: surplus energy and the renewable energy fraction (REF). The results reveal the validity and superiority of SDO in determining the optimal sizing of an HES with a higher convergence rate, lower ASC, lower LPSP, and higher REF than that of the GA, PSO, GWO, GOA, FPA, and BBBC algorithms. The performance analysis also reveals that an HES comprising PV arrays, WTs, battery banks, and DGS provides the best results: 238.7 kW from PV arrays, 231.6 kW from WTs, 192.5 kWh from battery banks, and 267.6 kW from the DGS. The optimal HES exhibits a high REF (66.4%) and is economically feasible ($104 323.10/year) and environmentally friendly. The entire load demand of the area under study is met without power loss (LPSP = 0%).
Keywords:computational intelligence algorithms  hybrid energy system  loss of power supply probability  renewable energy fraction  supply‐demand‐based optimization  surplus energy
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号