首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于偏微分方程的信号增强模型
引用本文:李俊,李远禄,蒋民. 一种基于偏微分方程的信号增强模型[J]. 数据采集与处理, 2019, 34(2): 274-280
作者姓名:李俊  李远禄  蒋民
作者单位:1.南京信息工程大学自动化学院, 南京, 210044;2.江苏省大气环境与装备技术协同创新中心, 南京, 210044
摘    要:在峰检测中,由于重叠峰和弱峰的存在,峰的漏检和错检率较高。为此本文在峰检测环节之前增加一个峰增强环节,使重叠峰的分离度以及弱峰幅度均增大。增强环节中采用的方法是将经典非线性扩散与导数谱相结合,即将导数谱增强后的信号作为经典非线性扩散的初始信号,经过一定时间的扩散得到增强后的信号。作为效果检验,首先对比了信号经过所提模型增强前后的效果,之后对比了其他信号增强模型的效果,结果表明本文所提模型有效。最后将本文模型应用于MALDI质谱峰增强。

关 键 词:非线性扩散  导数谱  重叠峰  信号增强  峰检测
收稿时间:2018-05-14
修稿时间:2018-12-24

A Signal Enhancement Model Based on Partial Differential Equations
Li Jun,Li Yuanlu,Jiang Min. A Signal Enhancement Model Based on Partial Differential Equations[J]. Journal of Data Acquisition & Processing, 2019, 34(2): 274-280
Authors:Li Jun  Li Yuanlu  Jiang Min
Affiliation:1.School of Automation, Nanjing University of Information Science & Technology, Nanjing, 210044, China;2.Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET),Nanjing, 210044,China
Abstract:Overlapping peaks and low amplitude peaks in peak detection stage will lead to a high false detection rate. Therefore, a peak enhancement step is added before the peak detection stage to improve the resolution of overlapping peaks and increase the amplitude of the low amplitude peaks. The method in the model is to combine the classical nonlinear diffusion with the derivative spectra. In other word, the signal after the derivative spectrum enhancement is used as the initial signal of the classical nonlinear diffusion, and the enhanced signal is the result of the diffusion. As a test of the proposed mode, the performance of signal enhancement by the proposed model is compared with non-enhancement one, then compared with the performance of other signal enhancement methods. Results show that the proposed model is effective. Finally, the proposed model is applied to the enhancement of MALDI mass spectrometry.
Keywords:nonlinear diffusion  derivative spectra  overlapped peak  signal enhancement  peak detection
点击此处可从《数据采集与处理》浏览原始摘要信息
点击此处可从《数据采集与处理》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号