首页 | 本学科首页   官方微博 | 高级检索  
     


A semiparametric density estimation approach to pattern classification
Authors:Fabian Hoti [Author Vitae] [Author Vitae]
Affiliation:Rolf Nevanlinna Institute, P.O. Box 4, 00014 University of Helsinki, Finland
Abstract:
A new multivariate density estimator suitable for pattern classifier design is proposed. The data are first transformed so that the pattern vector components with the most non-Gaussian structure are separated from the Gaussian components. Nonparametric density estimation is then used to capture the non-Gaussian structure of the data while parametric Gaussian conditional density estimation is applied to the rest of the components. Both simulated and real data sets are used to demonstrate the potential usefulness of the proposed approach.
Keywords:Semiparametric density estimation   Kernel estimation   Classification   Handwritten digit data   Satellite data   Microarray data
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号