首页 | 本学科首页   官方微博 | 高级检索  
     

生化途径参数估计的QPSO-MGbest算法
引用本文:余永红,冯斌,孙俊. 生化途径参数估计的QPSO-MGbest算法[J]. 计算机工程与应用, 2011, 47(20): 214-217. DOI: 10.3778/j.issn.1002-8331.2011.20.060
作者姓名:余永红  冯斌  孙俊
作者单位:江南大学 信息工程学院,江苏 无锡 214122
摘    要:讨论了非线性动力生化过程的参数估计(反问题),描述为受一组非线性代数-微分方程约束的非线性规划问题,由于频繁的病态和多峰值,传统的算法(如梯度算法)并不能得到满意的解。提出了一种改进的量子行为粒子群优化算法求解代谢途径的参数估计,该算法采用基于全局最好位置的变异操作以提高算法的非线性逼近能力和较好的全局搜索能力。以一个三阶段代谢途径为研究对象,建立参数估计的算法模型,以实验值和预测值的误差平方加权的和为目标优化函数。实验表明改进量子行为粒子群优化算法能够较好求解该问题。

关 键 词:粒子群优化  代谢途径  参数估计  全局位置变异  
修稿时间: 

QPSO-MGbest algorithm for parameter estimation in biochemical pathways
YU Yonghong,FENG Bin,SUN Jun. QPSO-MGbest algorithm for parameter estimation in biochemical pathways[J]. Computer Engineering and Applications, 2011, 47(20): 214-217. DOI: 10.3778/j.issn.1002-8331.2011.20.060
Authors:YU Yonghong  FENG Bin  SUN Jun
Affiliation:School of Information Technology,Jiangnan University,Wuxi,Jiangsu 214122,China
Abstract:The parameter estimation(inverse problem) of nonlinear dynamic biochemical pathways which is stated as a non- linear programming problem subject to nonlinear differential-algebraic constrains is discussed.The problem is frequently ill- conditioned and multimodal, traditional(gradient-based) local optimization methods fail to arrive at satisfactory solutions.An improved quantum-behaved particle swarm optimization is proposed to solve the inverse problem.The improve QPSO employs a mutation operation exerted on the global best position to enhance the search ability of the QPSO algorithm.A case study considering the estimation of 36 parameters of a nonlinear biochemical dynamic model is taken as a benchmark.It is shown that the improved QPSO algorithm is able to solve the problem successfully as showed by comparative experiments.
Keywords:particle swarm optimization  metabolic pathway  parameter estimation  mutation on global best position
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号