Autocatalytic reactions in the isothermal,continuous stirred tank reactor: Isolas and other forms of multistability |
| |
Authors: | P. Gray S.K. Scott |
| |
Affiliation: | Department of Physical Chemistry, University of Leeds, Leeds LS2 9JT, England |
| |
Abstract: | Autocatalytic reactions are often complicated, and analyses of their behaviour in open systems can seem too particular to permit useful generalisation. We study here the simplest of circumstances (uniform temperatures and concentrations in the isothermal CSTR) and the simplest of reaction schemes: (i) quadratic autocatalysis (A + B→2B); and (ii) cubic autocatalysis (A + 2B→3B). The catalyst B may be stable or have a finite lifetime (B→ inert products). Allowing for this finite lifetime adds another dimension to the interest.The phenomena encountered include multistability, hysteresis, critical extinctions, critical ignitions, and anomalous relaxation times (though infinite values do not arise). Patterns of stationary states as function of residence time can show isolas and mushrooms. All these aspects yield to simple algebraic analysis. The presence of the catalyst B in the inflow can make qualitative differences of a kind parallelled by an additional, non-catalytic reaction of the same stoichiometry (e.g. A→B). Invoking the reversibility of the reactions neither increases nor diminishes their variety, and thermodynamic considerations have little to do with the many different patterns of reactivity displayed.The local stability of the various stationary states has also been characterized. Quadratic autocatalysis shows limited variety (stable node, stable focus); cubic autocatalysis generates all the kinds of stationary state possible in a two-variable system. Again all the algebra is straightforward if not always simple. Sustained oscillatory behavior (limit cycles) also occur.All these remarks relate to isothermal systems, but there are the most striking parallels between isothermal autocatalysis and the exothermic, first-order reaction in the CSTR. Behaviour with an autocatalyst of complete stability corresponds to perfect heat insulation (adiabatic operation) in the non-isothermal, exothermic system. |
| |
Keywords: | Author to whom correspondence should be addressed. |
本文献已被 ScienceDirect 等数据库收录! |
|