首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于融合算法的管道泄漏信号处理方法
引用本文:李传宪,石亚男,姬中元,张雪立,朱浩然,逯雯雯. 一种基于融合算法的管道泄漏信号处理方法[J]. 石油化工高等学校学报, 2018, 31(3): 81. DOI: 10.3969/j.issn.1006-396X.2018.03.014
作者姓名:李传宪  石亚男  姬中元  张雪立  朱浩然  逯雯雯
作者单位:(1.中国石油大学 储运与建筑工程学院, 山东 青岛 266580; 2.中国石油化工股份有限公司 胜利油田分公司东辛采油厂, 山东 东营 257061)
基金项目:山东省教育规划课题资助(16BSH042)
摘    要:
利用环道实验模拟实际管道泄漏工况,验证了小波去噪的实际效果,通过时频联合分析泄漏信号的衰减过程,从两方面阐述了小泄漏不易被发现的原因,并且讨论了现阶段最常用的小波去噪方法处理小泄漏信号的不足。针对上述问题,建立新阈值函数提高小波去噪方法的信号重构精度,并从数学角度分析了新函数的优越性,提出了基于最大信噪比的盲源分离算法,将小波变换与盲源分离相融合,通过分离已知构造信号说明此方法的适用性,验证该融合算法的实际去噪效果和工业应用价值。

关 键 词:时频联合  小波去噪  新阈值函数  盲源分离  融合算法  
收稿时间:2017-09-11

A Method of Pipeline Leakage Signal Processing Based on Fusion Algorithm
Li Chuanxian,Shi Yanan,Ji Zhongyuan,Zhang Xueli,Zhu Haoran,Lu Wenwen. A Method of Pipeline Leakage Signal Processing Based on Fusion Algorithm[J]. Journal of Petrochemical Universities, 2018, 31(3): 81. DOI: 10.3969/j.issn.1006-396X.2018.03.014
Authors:Li Chuanxian  Shi Yanan  Ji Zhongyuan  Zhang Xueli  Zhu Haoran  Lu Wenwen
Affiliation:(1. College of Pipeline and Civil Engineering,China University of Petroleum,Qingdao Shandong 266580,China;2. Dongxin Oil Production Plant,Shengli Oilfield Company,Dongying Shandong 257061,China)
Abstract:
The actual denoising effect of wavelet denoising methed was studied through pipe flow test apparatus, which simulated the actual pipeline leakage condition. The reason why small leak was not easy to be found was explained from two expects through time frequency analysis of the leakage signal attenuation process. And the disadvantages of the most commonly used wavelet de-noising method to deal with small leakage signal were also discussed. On this basis, a new threshold function was established to improve the signal reconstruction accuracy and the advantage was analyzed mathematically. Next, a blind source separation algorithm based on maximum signal-to-noise ratio (SNR) was proposed, which integrated wavelet transform with blind source separation. By separating the known structural signal, the applicability of this method was illustrated, and the practical denoising effect and industrial application value of the fusion algorithm were verified.
Keywords:Time-frequency analysis  Wavelet denoising  New threshold function  Blind source separation  Fusion algorithm  
本文献已被 CNKI 等数据库收录!
点击此处可从《石油化工高等学校学报》浏览原始摘要信息
点击此处可从《石油化工高等学校学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号