首页 | 本学科首页   官方微博 | 高级检索  
     

雷达机动目标跟踪的卡尔曼粒子滤波算法
引用本文:郑润高,张安清. 雷达机动目标跟踪的卡尔曼粒子滤波算法[J]. 电光与控制, 2012, 19(1): 50-53. DOI: 10.3969/j.issn.1671-637X.2012.01.013
作者姓名:郑润高  张安清
作者单位:1.海军大连舰艇学院信息与通信工程系,辽宁大连,116018;2.海军大连舰艇学院信息与通信工程系,辽宁大连,116018
摘    要:为解决不敏粒子滤波算法对雷达机动目标跟踪实时性差和跟踪起始阶段收敛慢的问题,引入卡尔曼粒子滤波算法.通过坐标转换将实际的极坐标雷达观测数据转换为直角坐标数据,然后用线性最优的卡尔曼滤波器估计粒子状态先验概率密度,最后用非线性最优的粒子滤波器精确估计目标状态后验概率.仿真实验表明,与不敏粒子滤波相比,卡尔曼粒子滤波以牺牲较少精度(减少约6%)的代价,实现机动目标跟踪的实时性(约为前者的1/5),起始阶段收敛性更好.

关 键 词:机动目标跟踪  不敏粒子滤波  卡尔曼粒子滤波  坐标转换  实时性  收敛性
收稿时间:2011-01-19

Maneuvering Radar Targets Tracking with Kalman Particles Filter
ZHENG Rungao , ZHANG Anqing. Maneuvering Radar Targets Tracking with Kalman Particles Filter[J]. Electronics Optics & Control, 2012, 19(1): 50-53. DOI: 10.3969/j.issn.1671-637X.2012.01.013
Authors:ZHENG Rungao    ZHANG Anqing
Affiliation:(Dalian Naval Academy,Dalian 116018,China)
Abstract:The unscented particles filter has poor real time performance and converges slowly in the beginning of radar maneuvering target tracking.The Kalman particle filter was used to solve the problem.Firstly,the radar measurements which were measured under polar coordinates were transformed into data of Cartesian coordinates.Secondly,the prior probabilistic density of the particles was obtained based on the linear optimal Kalman filters.Then,the posterior probabilistic density of targets state was computed out using the nonlinear optimal particles.Compared with UPF,the time the KPF consumed was only about 1/5 of the UPF in tracking the radar maneuvering targets,and the cost of KPF was just about 6% of precision.Besides,in the beginning of tracking the KPF converged more quickly.
Keywords:maneuvering target tracking  unscented particle filter  Kalman particle filter  coordinate transformation  convergence
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号